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Abstract

The aim of this work is to present the first problems that appear in the study of nilpotent Lie
superalgebras. These superalgebras and so the problems, will be viewed as a natural generalization
of nilpotent Lie algebras.
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1. Introduction

In recent years, Lie superalgebra theory has had a profound effect on the evolution of
mathematics and physics. The first comprehensive description of the mathematical theory of
Lie superalgebras was given by Kac in 19¥0]. Kac classified all simple Lie superalgebras
with finite dimension over an algebraically closed field of characteristic zero. Semi-simple
Lie superalgebras and their cohomology have been studi@girs,8,11,12]

Regarding papers concerning nilpotent Lie superalgebras, we have only found ones ad-
dressing their definition (using the descending central sequence as for Lie algebras) and
Engel's Theorem. In 1998-1999, during a seminar at Haute Alsace University (Mulhouse,
France), Professors Goze and Khakimdjanov proposed a program for generalizing the notion
of filiform Lie algebras into Lie superalgebra theory.
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For a nilpotent Lie algebra of dimensiarthe nilindex is evidently< n — 1, and the Lie
algebras with nilindex — 1 form the class ofi-dimensional filiform Lie algebrafd 3].

For a nilpotent Lie superalgebra of type m), the nilindex is always n +m — 1. The
function f(n, m), defined as the maximal nilindex for the Lie superalgebras of type:),
is, in general, not equal o+ m — 1. Function determination is an open problem for the
general case.

In this paper we show thaf(n,m) = n +m — 1 if and only ifn = 2 andm is odd
(Theorem 4.1). Moreover, for any oddn, there is only one Lie superalgebra, denoted
by k2™ which verifies this condition, and the orbit &?2” in the varietyA>™ of the
Lie superalgebras of typ&, m) is open for Zariski topologyTheorem 4.1% We also
determine the functiorf(n, m) for some other particular casegheorem 4.238

We will refer to the nilpotent Lie superalgebras of ty@em), with nilindex f(n, m), as
maximal class Lie superalgebras, and we will denote the variety of these Lie superalgebras
asmtm,

There is another generalization of the notion of the filiform Lie algebras for the case of
Lie superalgebras. A nilpotent Lie superalgefpia called filiform if the even parfyo, is a
filiform Lie algebra (of dimension) and the odd pary, is a filiform go-module. We will
denote this variety of Lie superalgebrasB{".

The study of theF"™ class is simplified by the existence of “adapted” basis (see
Theorem 3.h In Gilg’s thesis[6], this theorem was used to investigate certain problems
associated with filiform Lie superalgebras.

It is natural to ask what relationships exist betweeti"™ and F"™. At first, we quite
naturally conjectured that™™ c F™™ (it is easy to show that™" ¢ M™™), but we
show that, in factM™"™ ¢ F"™™ (seeTheorem 6.1

In Section Swve give a classification for small dimensions. This classification was obtained
as an illustration of the conjecturet>™ c F2™ for anym odd.

We will not suppose any prior knowledge of the theory of Lie superalgebras. However,
we do assume that the reader is familiar with the standard theory of Lie algebras. All the
vector spaces that appear in this paper (and thus, all the algebras) are assunfitueotoe
spaces with finite dimension.

2. Preliminaries

The vector spac® is said to beZ,-graded if it admits a decomposition in direct sum,
V = Vo® V1. AnelementX of V is called homogeneous of degre&eg X) = d(X) = y),
y € Zp, ifitis an element oV,,. In particular, the elements &% (resp.V1) are also called
even (resp. odd).

LetV = Vo @ V1 andW = Wp & W1 be two graded vector spaces. A linear mappfng
V — W is said to be homogeneous of degse@ed /) = d(f) = y), y € Zp, if f(V,) C
Watymod2 for all o € Z,. The mappingf is called a homomorphism of tH&,-graded
vector spacé into theZ,-graded vector spad¥ if f is homogeneous of degree 0. Now it
is evident how we define an isomorphism or an automorphiséyafraded vector spaces.

A superalgebrg is just aZp-graded algebrg = go @ g1. That is, if we denote by []
the bracket product af, we have §., gs] C gotsmod2 forall o, g € Zo.
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Definition 2.1 (Scheunerfl2]). Letg = go @ g1 be a superalgebra whose multiplication
is denoted by the bracket product][ We call g a Lie superalgebra if the multiplication
satisfies the following identities:

1. [X, Y] = —(=D*P[Y, X] VX € ga, VY € gg.
2. (=DVYX, Y Z]) + (DY, [Z, X]] + (—DP7[Z,[X, Y]] =Oforall X € go, Y €
98, Z € gy with «, 8, y € Zo.

Identity 2 is called the graded Jacobi identity and it will be denotedJoy, ¥, Z).

Thedescending central sequenafa Lie superalgebra = go® g1 is defined by®(g) =
g, C*L(g) = [C*(g), g] for all k > 0. If C¥(g) = {0} for somek, the Lie superalgebra is
callednilpotent The smallest integér such ag’* (g) = {0} is called thenilindexof g.

We define two newdescending sequence® (go) andC*(g1), as fOIlOWS:CO(gi) = g
C"(gi) = [go, C*(80)]. k = 0,i € {0, 1}.

If g = go @ g1 is a nilpotent Lie superalgebra, thgrhas super-nilindex os-nilindex
(p, 9) [6], if the following conditions holds:

C" g0 (CTHg1) #0,  CP(go) = C?(g1) = 0.

Engel’s theorem for Lie algebras and its direct consequences remain valid for Lie superal-
gebras, the proof being the same as for Lie algef3&8.

Engel’s Theorem. A lie superalgebray is nilpotent if and only ifady (X) is nilpotent for
every homogeneous elemehof g.

Remark 2.2. It is known that if V is a vector space of dimensiom and§ is a set of
nilpotent endomorphism o¥/, then there exists a decreasing sequence of vector sub-
spacesV,,, ..., Vi, Vp of V, with dimensionsn, m — 1, ..., 0, respectively, and such
thath(Vi1) C ViVh e hi=0,1,... ,m — 1. Thus, if we take a nilpotent Lie superalge-
bra,g = go® g1, and consideV = g1 (g1 a vector space) arigthe operator ad restricted to
go, we have a decreasing sequence of subspédcesy/,, > --- D V1 D Vp of dimensions
m,m—1,...,0, such thatdo, V;11] C V..

We denote by the set of the Lie superalgebras= go ® g1 with dim(gg) = n and
dim(gy) = m.

If we take an homogeneous ba$%y, ..., X,—1, Y1,..., Y,} for g (g € £™™), the
superalgebra is completely determined by its structure constants, that is, by the set of
constants{Ci’]?, Dﬁ Eﬁ }i,j« that verify

n—1
[Xi X;]=) CiX, O<i<j<n-—1
k=0

m
[XiY]=) Divi, O<i<n—-11<j<m,
k=1

n—1
[Yi.Y]]=) EfX,, 1<i<j=<m,
k=0
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[, ] being the bracket product gf The structure constants of a Lie superalgebra verify the
restrictions obtained by the graded Jacobi ident[tig¢s

Let V = Vo & Vi denote the underlying vector spacegt= go ® g1 € £*" and
G (V) denote the group of the invertible linear maps of the fofre= fy + f1 such that
fo € GL(#,C) and f1 € GL(m,C) (G(V) = GL(n,C) ® GL(m, C)). The action of
G (V) on L™ induces an action on the Lie superalgebra variety: two |layand .o are
isomorphic, if there exists afi = fo + f1 € G(V), such that

p2(X, Y) = [ty (ua(fu(X), f5(1)) VX € Vo, VY €V,

We denote byD(u) the orbit of u corresponding to this action.

3. Filiform Lie superalgebras ™™

Next we consider filiform Lie superalgebras due to the fact that in this family the maximal
class of nilindex: + m — 1 is included.

Definition 3.1. Any Lie superalgebrg = go & g1 € N with s-nilindex(n — 1, m) is
called filiform.

We note byj\/’;,:’q" the subset oL formed by all Lie superalgebras with s-nilindex
(r, s), wherer < p ands < q.

Remark 3.2. We observe that the s&f}"";  is the variety of all nilpotent Lie superalge-
bras. For simplicity we writev"™ instead ofN"""",

n—1m-"

We denote byF"™ the subset oV composed of all filiform Lie superalgebras.

Definition 3.3. Let g = go ® g1 € N™™. g1 is called ago-filiform module if there
exists a decreasing subsequence of vectorial subspaces in its underlying vectori&l,space
V=V,D- DV D VWV, with dimensionsn,m — 1, ..., 0, respectively, and such that
[g0, Vita] = Vi

Corollary 3.4. Letbeg = go ® g1 € "™, thengo is a filiform Lie algebra andy; is a
go-filiform module

Adapted basisPrior to studying general classes of Lie (super)algebras it is convenient to
solve the problem of finding a suitable basis; a so-called adapted basis. This question is not
trivial for Lie superalgebras and it is very difficult to demonstrate the general existence of
such a basis. We prove in the following theorem that there always exists an adapted basis
for the class of filiform Lie superalgebras.

Theorem 3.5. If g = go @ g1 € F™™, then there exists an adapted basisgphamely
{Xo0, X1, ..., Xn-1,Y1,..., Yu},with{Xp, X1, ..., X,—_1}abasisofijgpand{Yy, ..., Y}
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a basis ofgy, such that

[Xo, Xi] = Xiy1, 1l=<i<n-2, [Xo, Xu-1] =0,

Xo is called the characteristic vector

Remark 3.6. This result was presented by the authors in 1999 during a seminar which took
place in Colmar (Haute Alsace University, France) and was subsequently uggdrbthe
study of low-dimensional filiform Lie superalgebras.

Proof of Theorem 3.5. As g = go @ g1 is a filiform Lie superalgebra, then, in particular,
go is a filiform Lie algebra. Thus we have an adapted basigdor {Xo, X1, ..., X,—1}
with [Xo, X;] = X;41,1<i <n—2and [Xg, X,,—1] = 0.

On the other handy; is ago-filiform module, so there exists a creasing subsequence of
vectorial subspaces in the vectorial space correspondigg ttamelyV,,, such that

. . Vi
0OcVic- - CV, with d|m<;/—+1> =1,
i
where eachV; will be the vectorial space of generatdig, ..., Y;}, V; = (Y1,...,Y;),
with [go, Vit1] = Vi.
By induction, it is possible to prove that there exists a set of non-null scalars namely
{Aig, Aigs .., Ai, } Whose indicesio, i3, ... ,in} €{0,1,...,n — 1} verify

[Xip, Vil = Ay Vi1 + W (Ye—2, ..., Y1), 2<k <m,

wherev; (v1, va, ... , vs) represents a linear combination of the vectars vy, . .. , vs}.
Using the graded Jacobi identity we can assertfthat . . , i,,} € {0, 1}. Thus we have

[Xj,Y1]=0, j=12,
[Xo, Y2] = A2Y1, [X1, Y2] =82Y1 (A2, 82) # (0,0),
[Xo, Y3] = A3Y2 + ¥3(Y1), [X1, Y3] = 83Y2+ @3(Y1) (A3, 83) # (0, 0),

[X0. Y] =AYic1+ ¥ (Yi—2,... . Y1), 4<i=<m,
[X1,Vi]=68Yi 1+ D;(Yi—2,..., Y1) (Am,8n) # (0,0).
Using the change of baskg) = X0+ yX1, the new structure constantsarex; = x; + y5;,

and by choosing such that ¢ {—12/82, —13/83, ... , —Am/8m}, A; Will be distinct from
zero for alli.
An obvious new change of basis proves the theorem. O

4. Thealgebraic variety N™™: Lie superalgebras of maximal nilindex M™™

The aim of this paper is to determine the maximal class. It is easy to see that if
go @ g1 € N™™ with nilindexn + m — 1, thengg is a filiform Lie algebra angy; is a
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go-filiform module; that isg = go ® g1 € ™™ and M™™ c F™™ in this case. However,
in this section we will prove that this nilindex is only possible foe= 2 andm odd. In all
the cases that remain, the maximal nilindex (or the nilindex of the maximal 815%)
will be < n + m — 2 and then we have in general

‘/\/ll'l,mﬁ C ‘7_-n.m

which complicates the issue because no adapted basis exist ohtsitle
Next we consider some of the properties of the algebraic subvaviét.

Proposition 4.1. N’},:’;l is an algebraic subvariety of™".

Proof. The set/\/”l’,;? of L™ is defined by the restriction® (go) = 0 andC?(gy) = 0, but
these restrictions are polynomial equations of the structure constantsz\/‘lj@s’ns closed
for Zariski topology and it will have the structure of an algebraic subvariety. We denote by
NZ:’; the corresponding affine variety. |

We denote byV;"™ the subset o™ formed by all Lie superalgebras with nilindex
less or equal td.

Proposition 4.2. N;"" is an algebraic subvariety of"".

Proof. The set\}"™ of L™ is defined as follows:
Nz’m = {M € cn’m/M(le /“L(X21 vy I’L(ka Xk+1)) o ) = O}

forany Xy, ..., X411 € CH™.

Itis easy to see that, if we fix a basis@f", the laws of Lie superalgebras are identified
with their structure constants that verify polynomial relations as was seen in Section 2. The
set ;"™ given by the above definition will come done by polynomial relations too, so
N™ is closed for Zariski topology and it will have the structure of an algebraic subvariety
of £™. We denote byV;"™ the corresponding affine variety. O

Remark 4.3. We observe that the séf)"" _, is the variety of all the nilpotent Lie super-
algebras\V™. Thus we have

n,m . s _ n,m

n—:—m—l - Nn "= n—1m-"
Definition 4.4. A Lie superalgebrg = go @ g1 € N"™ is said to be of maximal nilindex,
or belongs to the maximal class, if its nilindex is the maximum possible.

Remark 4.5. The problem of finding the maximal nilindex for any pair of dimensioasd

m (dimensions of the even and odd parts, respectively) is still an open one. The function that
gives the maximal nilindex for each pair of dimensianandm will be noted by f(n, m).

For nilpotency it is easily see thgtn, m) <n +m — 1.

We note byM"™™ the maximal class composed of all the nilpotent Lie superalgebras of
maximal nilindex f(n, m). By constructionM™"™ is the true generalization of the filiform
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Lie algebras in the theory of Lie superalgebras, not the filiform Lie superalgebfds,
presented if6].

Proposition 4.6. Each component of1™" determines a component.&f*™.

Proof. M™™ = N — /\/”}’(fm)fl is a Zariski open subset gf ™. O

Corollary 4.7. Foranyu € M™™ the Zariski closure of the orb®(u), O(u),z will be
an irreducible component g™,

As we have already noted in general there is not an adapted basis, so we can only speak
in terms of an adequate basis. Thus we have the following lemma.

Lemmad4.8. If g = go®g1 € N, thenthere exists abadiXo, X1,..., X,_1, Y1, ...,
Y.} of g, with {Xo, X1, ..., X,,_1} abasis ofjp and{Y1, ... , Y¥,,} a basis ofy1, such that

[Xo, Xil =6 Xiy1, 1<i<n-2 [Xo0, X—1]1 =0,
[X0,Y]=6;Yjt1+ A —-8)¥i(Yjyo,... . V), 1<j<m-—-1,
[Xo, Ym] =0, &i, 5] S {0, 1},

whereXj is just a characteristic vector of the Lie algehga.

Proof. We take an adapted basis far(such a basis exists fgg be a nilpotent Lie algebra)
and take also, as a basis @f, the vectors corresponding to the decreasing sequence of
vectorial subspaces @f (this exists forgy be ago-module). Then, the result is obtained
applying simple changes of basis as and when required. a

The first question we address is whether there exist Lie superalgebras with maximal
nilindex f(n, m) = n + m — 1 and thus if there exists a pair of valu@s m) for which
this maximal nilindex is obtained. It is natural to perform this searc/iri", but such a
strategy cannot be employed for cases in which the funcfienm) < n +m — 2.

Searching a superalgebra as described above wefritl

Example4.9 (Of existence). In what follows we denote k" (m odd) the family of Lie

superalgebras for which the products in an adapted p&sisX1, Y1, ... , Y, } are:
g2m . | [Xo. Yil =Yg, 1<i<m-1,
Yl = CDOYX 1<i<3m+ D).

K?™ (m odd) is a family of Lie superalgebras with maximal nilindex m — 1 = m + 1.
So, f(2,m) = m + 1 for m odd.

Remark 4.10. O(kK%™) will be a family of Lie superalgebras of maximal nilindex
m—+ 1.



480 J.R. @mez et al./ Journal of Geometry and Physics 51 (2004) 473-486

Next we study in more detail this orbit, obtaining that it is an open set for the Zariski
topology inA/%™ for anym odd. This result is important because if the orbit is open then
its dimension coincides with the dimension of its Zariski closure, and this closure is a
component of the variety of nilpotent Lie superalgebras. We first need the following two
lemmas.

Lemma4.11. Supposg € F2m withm odd and with adaptedbadiXo, X1, Y1, ..., Yl
If the structure constanE%m # 0 theng belongs to the following family of filiform Lie su-
peralgebragu(az, . .. , ag—1),2) defined by

[Xo0,YVi] =Yit1, l<i<m-—-1,

[Yi, Ympr—i] = (DX, 1<i<im+1),

Vi, Yol = (=D oy X1, 1<i<kl<k< %(m ~1
withay e Cforl <k < (m —1)/2.

Remark 4.12. E1 + 0 signifies that dimiz(g)) = 1.

Proof. Letgbe as described under the assumptions of the lemma and with an adapted basis
{Xo0, X1, Y1, ..., Yy} If E%m # 0 without loss of generality we can suppose tE%;, =1
and then, the descending central sequence is

C@) = (X)) ® (Yist, .- s Ym), l<i<m—1, C"(g) = (X1)® (0),
Cl@=0a(0), j>m+1

By induction and appropriate use of the graded Jacobi identity we obtain the resui.

Remark 4.13. The family (a1, ... , agm—1)2), With m odd, is open inF2™ for Zariski
induced topology. ASF2™ is open in\2™ thenpu(aa, . . . , dum—1)/2) iS Open i\,

Remark 4.14. In the family of the previous lemma we obtak?"” for ay = 0, 1< k <
(m —1)/2.

Lemma 4.15. For any oddm, the ((m — 1)/2)-parametric familyu(az, ... , 2m-1)/2) iS
included in the orbit ofx 2"

(@, ... em-12) S OK>™).

Proof. Letg be any Lie superalgebra of the famjly(as, ... , og-1)/2).
Making the change of basis defined by
m
X6=X0, ’1=a§X1, a1 # 0, Yiz Za,’Yi,
i=1
m—j+1

Yi=[Xo.Yjl= ) aYij1, 2<j<m,
i=1
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whereq;, 2 < i < m, are free parameters, the new structure consﬂf%ptremains equal to
1. For the bracket products

[V, Yi-1-] = (D au-n2X1, 1<i<30m—1,
we obtain thab/(m_l)/2 is a polynomial equation in, of degree 2. It is possible to select

az as one of the roots @f’(m_l)/z. Similarly, and by induction, we obtain the theoreml

Theorem 4.16. For any oddmn there exists an orbit it>”, namely®(K?™), that is open
for Zariski topology

Proof. The result follows fronO(K?™) € u(ea, . .. , am-1)2). In fact, if g € O(K>™)
then dim Z(g)) = 1, so the result is obtained because, if not, dity)) = 2 which is a
contradiction O

Theorem 4.17 (Main theorem for maximal class)he only non-trivial Lie superalgebra
up to isomorphispwith nilindexn 4+ m — 1is K™ which occurs fom = 2 andm odd

Before proving the theorem, the following proposition is required.

Proposition 4.18. The maximal nilindex of the familf™™ isn + m — 1 and it is only
obtained form = 1 (degenerated ca¥and forn = 2 andm odd

Proof. The proofis very laborious and needs the three following technical lemmas that are
proved using the graded Jacobi identity.

Lemma 4.19. Supposeys = go @ g1 € F™*™. If the vectorX; appears in the bracket
[Y1, Y,,] and X; ¢ B(g1 x g1) with0 < [ < k (according to the notation dfl]) thenm is
odd andk =n — 1.

Lemma4.20. Supposg = go®gi € F".Ifthe vectorX; appearsin the brackét;, Y]
for the caser > 3andm odd theni + jisevenan® <i+ j <m — 1.

Lemma 4.21. Suppose bg = go ® g1 € F™™. If the vectorX1 appears in the bracket
[Y;, Y;] inthe case: > 3andm even theri + jisevenan® < i+ j < m.

In order to prove the proposition itis necessary to consider the following cases separately:
(i) n = 1, (iiy m = 1, (iii) n > 3andm odd, (iv) n > 3 andm evenand (v)n = 2 and
m even

The proof for case (i) is trivial. The result for case (ii) is obtained if adequate graded
Jacobi identities are considered. The result for case (iii) is obtained usmgia 4.2tand
considering all the possible bracket produdfs ;] with 1 < i < (m — 1)/2, in which
vector X1 could appear. Cases (iv) and (v) are analogous, usamyma 4.21linstead of
Lemma 4.20
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Proof of Theorem 4.17. It is easy to see that the condition of nilindex+ m — 1 leads
one to consider filiform Lie superalgebras (this fact is not true for nilindices+ m —

2). Given the previous proposition and the structure of the orbik®? determined in
F2™ by the ConditionE%m # 0, it only remains to determine if the structure constant
E%m = 0. Then by the graded Jacobi identity, we never can obtain maximal nilindes
(n+m—1). O

Corollary 4.22. For n = 2 andm odd the conjectureM™™ c F™™, is true that is
MZm < F2m Eurther,

MM = O(K?™) = p(aa, . .., dm—1)2)-

Forn = 2 and any evem we have solved the problem of finding the maximal nilindex
function, f(n, m), and determining the maximal class{*™, or set of nilpotent Lie super-
algebras, with nilindex equal tfi(n, m). Further, for all the remaining possibilities for the
pair of dimension(n, m), we have proved that

fn,m) <n+m-—2.

Now, one can find lots of cases fot, m) where the functionf(n, m) takes the value
n +m — 2. Thus, we have the following theorem.

Theorem 4.23. The maximal nilindex functigry(n, m), is equal ton + m — 2 if n andm
belong to one of the following cases

(i) n =2andm even
(i) n=3.
(i) n =4andm = 5o0rm even
(iv) ne{m,m+ 1}.
(V) n =m 4+ 2withm even

Remark 4.24. The casen = 1 andn = 1 are trivial and we obtairf(1, 1) = 2 = f(2, 1),
fn,) =n—1forn > 3andf(1, m) = m.

Proof of Theorem 4.23. Itis enough to present in each case a family of Lie superalgebras
with nilindexn + m — 2. In some cases the work needed to obtain these families has been
very laborious, so we will only give the final expression.

e For the first case (i) we can consider the family of Lie superalgekife®, with m even,
defined by
[Xo,YVi]=Yiy1, 1<i<m-1,
[Yi, Yoi] = (=D ™202xy, 1<i < im.

(We have used the same notatid:”, because it is the natural adaptationk®” (m
odd) to the case when is even.)
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e Forn = 3 andm odd, we can considdt3”, the family of laws that can be expressed in
an adapted bas{o, X1, X2, Y1, Y2, ..., Y;y} by
[Xo, X1] = X2, [Xo0,Y]=VYiy1, 1l<i<m-—1,
[Yi. Y1) = (=D Xp, 1<i<Fm+1).
If n = 3 andm is even we can consider the following family:

[Xo, X1] = X2, [Xo,Vi]=Yiy1, 1<i<m-—1,
[Yi, Yei]l = (=D)""20/2x3 1<i<3m,
[Yi, Y1l = (=D 223 (m — 2i + 1)) X2, 1<i < 3m.
e Forn = 4 andm even, we can consider the following family of laws that can be expressed
in an adapted basiXo, X1, X2, X3, Y1, Y2, ..., Y, } by
[Xo, Xi] = Xiy1, 1<i=<2 [X0.Yi]=Yiy1, 1l<i<=m-—-1,
Yi, Vo] = (D" 2Xy, 1<i<im,
2
Yi. Ymi1] = (D" 22(Fm — 2i + 1)) X2, 1<i < 3m,
+ 2 2
[Yi, Ymyoi] = (=D 222G = Dm — (i — D?) X3, 2<i<30m+2).

If n = 4 andm = 5 we can consider the following superalgebra:

[Xo, Xi] = Xit1, 1<i<2, [Xo0.Yi] =Yiy1, 1<ic<A4,
[X1,Y3] = V5, [X2, Y2] = —V5, [X3, Y1] = V5,
[Y1,Ys] = =X1,  [Y1,Ya=—3X2,  [Y2,Y2]=X1, [Y2,¥3] =3Xo,
[Y2, Ya] = —3 X3, [Y3, Y3] = 2X3.
e Cases for whichu = m andn = m + 1. For these cases it is enough to consider
the following family of laws whose products can be expressed in an adapted basis
{Xo, X1, ..., Xn, Y1,..., Yy} by
[Xo. Xi] = Xit1, 1<i<n-2 = [XoY]=Yj1, 1<j<m-—1
[X1, X¢] = —Xp41, 2<k=<n-2 [X1. Y] =~Y,p1, 2<r=<m-1,
[X,, Yi] =Y,11, 2<r<m-—1, [Y1, Y1] = X1,
[Y1.Y,]=3X,, 2<r<n-1

These families have nilindex+ m — 2.

e The case: = m + 2, m even. In this case we consider the Lie superalgebra of nilindex
n + m — 2 that can be expressed in an adapted Ha&s X1, ..., X;ut1, Y1, ..., Y}

by
[Xo, Xi] = Xiy1, 1<i<m, [Xo,Y]]=Yjy1, 1<j<m-—1,
[X1, Xi] = —Xp41, 2<k<m-—1,
[Xi, Xmi1-il = (D) Xppy1, 2<i<3m,
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[X1,Yj]=—=Yj11, 2<j<m-—1,
[X;,Y1]=Yj11, 2=<j<m -1, [Y1, 1] = X3,
[V, Vil = 23Xk, 2<k<m,
[Yi, Yimpo—il = (D 3Xpmr1, 2<i<3(m+2). O

Proposition 4.25. In the filiform case it is verified thaif n > 2m + 1, then
fn,m)=n—1
Proof. By induction, and using the graded Jacobi identity, we ob&ig Im(ady;, ... ,

adY,,) withl <i < m.
Consequently the descending central sequence is

C(g) = (Xit1, - s Xn-1) ® (Yig1, ..., V), 1<i<m-—1,
Clg) = (Xit1, -, Xn-1)®(0), m<i<n—2, " g =0),

and the nilindex is — 1. O
Corollary 4.26. In genera) we have thatf(n,m) >n — 1ifn > 2m + 1.

We conjecturethat in the general case the maximal nilindex functfn, m) stabilizes
atn — 1 as in the filiform case.

5. Classifications for specific dimensions

The classifications that we present in this section are illustrations of the validity of the
conjectureM?™ ¢ F2™ for any oddm. Thus, we have the following results.

Proposition 5.1. Letg be any Lie superalgebrg € A”>1. Then it is isomorphic to one of
the two following Lie superalgebras that can be expressed in an adapted Kasi% 1, Y}

by
—p21 (abelian,  —K*':[Y Y] = X1

Proof. The proofis trivial. O

Theorem 5.2 (Classification).Letg = go@® g1 be any Lie superalgebiae N'23. If gis not
a filiform Lie superalgebra then it is isomorphic to one of the following Lie superalgebras
that can be expressed in an adapted bdXis, X1, Y1, Yo, Y3} by

—u23 (abelian, —B*3: Y., Y]] = )Xo+ b X1 (g1 = trivial go-module,
—Lo®C?:[Xo, V1] =Y» (Lxfiliform Lie algebra,

— (> w2 @5 C3) 1 [Xo, Y1] = Yo, [X1, Y1] = Y3 (metabelian Lie algebra
—Ho(~ puo @ C3) : [Xo, Y1] = Y3 (Heisenberg Lie algebna
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—u?:[Xo, Y1] = Yo, [Y1, V1] = X1 (splitcaseV22 @ C),

—1® 1 [Xo, Y1] = Y3, [X1, Yo] = —Y3, [Y1, Y1] = X1, [Y1. V2] = 3 Xo.

—1* 1 [Xo, Y1] = Y2, [Y1, V1] = X1, [V3, Y3] = X1,

—p® [Xo, Y1) = Yo, [Y1, Ya] = X1, —ub: [Xo, Y1] = Y2, [Va, Y3] = X1.

Remark 5.3. The Lie superalgebragz s, B>3, L, @ C2, u', H will be considered as
degenerate cases

Remark 5.4. There are only four, up to isomorphism, Lie superalgebras non-degenerate
and non-split for the varietyv>3 — 23, These Lie superalgebras arewith 3 < i < 6.

Proof. Itis clear that all these Lie superalgebras ardin® — F23. It is trivial to show
that any degenerate case is not isomorphic to any another.
For the non-degenerate cases it is sufficient to show

nilindex dim(Cent;(g1)) dim[Centy, (go), Centy, (go)]
us 3 — _
4
W 2 2 1
u® 2 2 0
u 2 3 -

It only remains to prove that there are no other possibilities. From Theorem 4.7, there exists
an homogeneous bagiX¥o, X1, Y1, Y2, Y3} such that

[Xo, Y1] = 81Y2 4 (1 — 81)¥1(Ya), [Xo, Y2] = 682Y3

with 81, 62 € {0, 1}. There are six possibilities forX]p, ¥;], 1 < i < 2 and there are
different cases for each one of them. However, using, essentially, graded Jacobi identities
and adequate change of basis we obtain the result. a

6. Relationsbetween M™™ and F"™

Itis easy to prove that™™ ¢ M™™. For example, if we consider any Lie superalgebra
g € F2™m —O(K?™), withm odd, the structure constaht, is equal to zero which implies
thatg will be of nilindexm which is not maximal (the maximal nilindex in this caseiig-1).
Sog will be a filiform Lie superalgebra that is not in the maximal class.

Finally, in this section we prove tha¢™" ¢ F™*™,

We use the family of non-filiform Lie superalgebras/ef>”, with m odd, which can be
expressed in an adapted basty, X1, X2, Y1, ..., Y} by the products

[Xo,Yi]=Yi41, 1<i<m-1,
[V, Yol = (—1D)/(X1 —kXp), 1<j<kl<k<3im+1.
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Theorem 6.1. M™*™ ¢ F™™,

Proof. The mentioned family has maximal nilindext1 (= n+m — 2) for each dimension
m which is odd. It is clearly not a filiform Lie superalgebra because the even part is abelian
and hence not filiform, which proves the theorem. O
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