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Abstract

The aim of this work is to present the first problems that appear in the study of nilpotent Lie
superalgebras. These superalgebras and so the problems, will be viewed as a natural generalization
of nilpotent Lie algebras.
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1. Introduction

In recent years, Lie superalgebra theory has had a profound effect on the evolution of
mathematics and physics. The first comprehensive description of the mathematical theory of
Lie superalgebras was given by Kac in 1977[10]. Kac classified all simple Lie superalgebras
with finite dimension over an algebraically closed field of characteristic zero. Semi-simple
Lie superalgebras and their cohomology have been studied in[2,4,5,8,11,12].

Regarding papers concerning nilpotent Lie superalgebras, we have only found ones ad-
dressing their definition (using the descending central sequence as for Lie algebras) and
Engel’s Theorem. In 1998–1999, during a seminar at Haute Alsace University (Mulhouse,
France), Professors Goze and Khakimdjanov proposed a program for generalizing the notion
of filiform Lie algebras into Lie superalgebra theory.
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For a nilpotent Lie algebra of dimensionn the nilindex is evidently≤ n − 1, and the Lie
algebras with nilindexn − 1 form the class ofn-dimensional filiform Lie algebras[13].

For a nilpotent Lie superalgebra of type(n,m), the nilindex is always≤ n+m− 1. The
functionf(n,m), defined as the maximal nilindex for the Lie superalgebras of type(n,m),
is, in general, not equal ton + m − 1. Function determination is an open problem for the
general case.

In this paper we show thatf(n,m) = n + m − 1 if and only if n = 2 andm is odd
(Theorem 4.17). Moreover, for any oddm, there is only one Lie superalgebra, denoted
by K2,m, which verifies this condition, and the orbit ofK2,m in the varietyN 2,m of the
Lie superalgebras of type(2,m) is open for Zariski topology (Theorem 4.16). We also
determine the functionf(n,m) for some other particular cases (Theorem 4.23).

We will refer to the nilpotent Lie superalgebras of type(n,m), with nilindexf(n,m), as
maximal class Lie superalgebras, and we will denote the variety of these Lie superalgebras
asMn,m.

There is another generalization of the notion of the filiform Lie algebras for the case of
Lie superalgebras. A nilpotent Lie superalgebrag is called filiform if the even part,g0, is a
filiform Lie algebra (of dimensionn) and the odd part,g1, is a filiformg0-module. We will
denote this variety of Lie superalgebras byF n,m.

The study of theF n,m class is simplified by the existence of “adapted” basis (see
Theorem 3.5). In Gilg’s thesis[6], this theorem was used to investigate certain problems
associated with filiform Lie superalgebras.

It is natural to ask what relationships exist betweenMn,m andF n,m. At first, we quite
naturally conjectured thatMn,m ⊂ F n,m (it is easy to show thatF n,m �⊂Mn,m), but we
show that, in fact,Mn,m �⊂ F n,m (seeTheorem 6.1).

In Section 5we give a classification for small dimensions. This classification was obtained
as an illustration of the conjectureM2,m ⊂ F 2,m for anym odd.

We will not suppose any prior knowledge of the theory of Lie superalgebras. However,
we do assume that the reader is familiar with the standard theory of Lie algebras. All the
vector spaces that appear in this paper (and thus, all the algebras) are assumed to beC-vector
spaces with finite dimension.

2. Preliminaries

The vector spaceV is said to beZ2-graded if it admits a decomposition in direct sum,
V = V0⊕V1. An elementX of V is called homogeneous of degreeγ (deg(X) = d(X) = γ),
γ ∈ Z2, if it is an element ofVγ . In particular, the elements ofV0 (resp.V1) are also called
even (resp. odd).

LetV = V0 ⊕V1 andW = W0 ⊕W1 be two graded vector spaces. A linear mappingf :
V → W is said to be homogeneous of degreeγ (deg(f) = d(f) = γ), γ ∈ Z2, if f(Vα) ⊂
Wα+γ(mod 2) for all α ∈ Z2. The mappingf is called a homomorphism of theZ2-graded
vector spaceV into theZ2-graded vector spaceW if f is homogeneous of degree 0. Now it
is evident how we define an isomorphism or an automorphism ofZ2-graded vector spaces.

A superalgebrag is just aZ2-graded algebrag = g0 ⊕ g1. That is, if we denote by [, ]
the bracket product ofg, we have [gα, gβ] ⊂ gα+β(mod 2) for all α, β ∈ Z2.
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Definition 2.1 (Scheunert[12]). Let g = g0 ⊕ g1 be a superalgebra whose multiplication
is denoted by the bracket product [, ]. We call g a Lie superalgebra if the multiplication
satisfies the following identities:

1. [X, Y ] = −(−1)α·β[Y,X] ∀X ∈ gα,∀Y ∈ gβ.
2. (−1)γ·α[X, [Y,Z]] + (−1)α·β[Y, [Z,X]] + (−1)β·γ [Z, [X, Y ]] = 0 for all X ∈ gα, Y ∈
gβ, Z ∈ gγ with α, β, γ ∈ Z2.

Identity 2 is called the graded Jacobi identity and it will be denoted byJg(X, Y,Z).

Thedescending central sequenceof a Lie superalgebrag = g0⊕g1 is defined byC0(g) =
g, Ck+1(g) = [Ck(g), g] for all k ≥ 0. If Ck(g) = {0} for somek, the Lie superalgebra is
callednilpotent. The smallest integerk such asCk(g) = {0} is called thenilindexof g.

We define two newdescending sequences, Ck(g0) andCk(g1), as follows:C0(gi) = gi,
Ck+1(gi) = [g0, Ck(gi)], k ≥ 0, i ∈ {0,1}.

If g = g0 ⊕ g1 is a nilpotent Lie superalgebra, theng has super-nilindex ors-nilindex
(p, q) [6], if the following conditions holds:

(Cp−1(g0))(C
q−1(g1)) �= 0, Cp(g0) = Cq(g1) = 0.

Engel’s theorem for Lie algebras and its direct consequences remain valid for Lie superal-
gebras, the proof being the same as for Lie algebras[3,9].

Engel’s Theorem. A lie superalgebrag is nilpotent if and only ifadg(X) is nilpotent for
every homogeneous elementX of g.

Remark 2.2. It is known that ifV is a vector space of dimensionm andh is a set of
nilpotent endomorphism ofV , then there exists a decreasing sequence of vector sub-
spacesVm, . . . , V1, V0 of V , with dimensionsm,m − 1, . . . ,0, respectively, and such
thath(Vi+1) ⊆ Vi∀h ∈ h i = 0,1, . . . , m − 1. Thus, if we take a nilpotent Lie superalge-
bra,g = g0⊕g1, and considerV = g1 (g1 a vector space) andh the operator ad restricted to
g0, we have a decreasing sequence of subspacesV = Vm ⊃ · · · ⊃ V1 ⊃ V0 of dimensions
m,m − 1, . . . ,0, such that [g0, Vi+1] ⊆ Vi.

We denote byLn,m the set of the Lie superalgebrasg = g0 ⊕ g1 with dim(g0) = n and
dim(g1) = m.

If we take an homogeneous basis{X0, . . . , Xn−1, Y1, . . . , Ym} for g (g ∈ Ln,m), the
superalgebra is completely determined by its structure constants, that is, by the set of
constants{Ck

ij ,D
k
ij , E

k
ij }i,j,k that verify

[Xi,Xj] =
n−1∑
k=0

Ck
ijXk, 0 ≤ i < j ≤ n − 1,

[Xi, Yj] =
m∑

k=1

Dk
ijYk, 0 ≤ i ≤ n − 1,1 ≤ j ≤ m,

[Yi, Yj] =
n−1∑
k=0

Ek
ijXk, 1 ≤ i ≤ j ≤ m,
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[ , ] being the bracket product ofg. The structure constants of a Lie superalgebra verify the
restrictions obtained by the graded Jacobi identities[7].

Let V = V0 ⊕ V1 denote the underlying vector space ofg = g0 ⊕ g1 ∈ Ln,m and
G(V) denote the group of the invertible linear maps of the formf = f0 + f1 such that
f0 ∈ GL(n,C) andf1 ∈ GL(m,C) (G(V) = GL(n,C) ⊕ GL(m,C)). The action of
G(V) onLn,m induces an action on the Lie superalgebra variety: two lawsµ1 andµ2 are
isomorphic, if there exists anf = f0 + f1 ∈ G(V), such that

µ2(X, Y) = f−1
α+β(µ1(fα(X), fβ(Y))) ∀X ∈ Vα,∀Y ∈ Vβ.

We denote byO(µ) the orbit ofµ corresponding to this action.

3. Filiform Lie superalgebras F n,m

Next we consider filiform Lie superalgebras due to the fact that in this family the maximal
class of nilindexn + m − 1 is included.

Definition 3.1. Any Lie superalgebrag = g0 ⊕ g1 ∈ N n,m with s-nilindex(n − 1,m) is
called filiform.

We note byN n,m
p,q the subset ofLn,m formed by all Lie superalgebras with s-nilindex

(r, s), wherer ≤ p ands ≤ q.

Remark 3.2. We observe that the setN n,m
n−1,m is the variety of all nilpotent Lie superalge-

bras. For simplicity we writeN n,m instead ofN n,m
n−1,m.

We denote byF n,m the subset ofN n,m composed of all filiform Lie superalgebras.

Definition 3.3. Let g = g0 ⊕ g1 ∈ N n,m. g1 is called ag0-filiform module if there
exists a decreasing subsequence of vectorial subspaces in its underlying vectorial spaceV ,
V = Vm ⊃ · · · ⊃ V1 ⊃ V0, with dimensionsm,m − 1, . . . ,0, respectively, and such that
[g0, Vi+1] = Vi.

Corollary 3.4. Let beg = g0 ⊕ g1 ∈ F n,m, theng0 is a filiform Lie algebra andg1 is a
g0-filiform module.

Adapted basis. Prior to studying general classes of Lie (super)algebras it is convenient to
solve the problem of finding a suitable basis; a so-called adapted basis. This question is not
trivial for Lie superalgebras and it is very difficult to demonstrate the general existence of
such a basis. We prove in the following theorem that there always exists an adapted basis
for the class of filiform Lie superalgebras.

Theorem 3.5. If g = g0 ⊕ g1 ∈ F n,m, then there exists an adapted basis ofg, namely
{X0, X1, . . . , Xn−1, Y1, . . . , Ym},with{X0, X1, . . . , Xn−1}a basis ofg0 and{Y1, . . . , Ym}
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a basis ofg1, such that:

[X0, Xi] = Xi+1, 1 ≤ i ≤ n − 2, [X0, Xn−1] = 0,

[X0, Yj] = Yj+1, 1 ≤ j ≤ m − 1, [X0, Ym] = 0.

X0 is called the characteristic vector.

Remark 3.6. This result was presented by the authors in 1999 during a seminar which took
place in Colmar (Haute Alsace University, France) and was subsequently used by[6] in the
study of low-dimensional filiform Lie superalgebras.

Proof of Theorem 3.5. As g = g0 ⊕ g1 is a filiform Lie superalgebra, then, in particular,
g0 is a filiform Lie algebra. Thus we have an adapted basis forg0 : {X0, X1, . . . , Xn−1}
with [X0, Xi] = Xi+1,1 ≤ i ≤ n − 2 and [X0, Xn−1] = 0.

On the other hand,g1 is ag0-filiform module, so there exists a creasing subsequence of
vectorial subspaces in the vectorial space corresponding tog1, namelyVm, such that

0 ⊂ V1 ⊂ · · · ⊂ Vm with dim

(
Vi+1

Vi

)
= 1,

where eachVi will be the vectorial space of generators{Y1, . . . , Yi}, Vi = 〈Y1, . . . , Yi〉,
with [g0, Vi+1] = Vi.

By induction, it is possible to prove that there exists a set of non-null scalars namely
{λi2, λi3, . . . , λim} whose indices{i2, i3, . . . , im} ⊆ {0,1, . . . , n − 1} verify

[Xik , Yk] = λikYk−1 + Ψk(Yk−2, . . . , Y1), 2 ≤ k ≤ m,

whereΨk(v1, v2, . . . , vs) represents a linear combination of the vectors{v1, v2, . . . , vs}.
Using the graded Jacobi identity we can assert that{i2, . . . , im} ⊆ {0,1}. Thus we have

[Xj, Y1] = 0, j = 1,2,

[X0, Y2] = λ2Y1, [X1, Y2] = δ2Y1 (λ2, δ2) �= (0,0),

[X0, Y3] = λ3Y2 + Ψ3(Y1), [X1, Y3] = δ3Y2 + Φ3(Y1) (λ3, δ3) �= (0,0),

[X0, Yi] = λiYi−1 + Ψi(Yi−2, . . . , Y1), 4 ≤ i ≤ m,

[X1, Yi] = δiYi−1 + Φi(Yi−2, . . . , Y1) (λm, δm) �= (0,0).

Using the change of basisX′
0 = X0+γX1, the new structure constantsλ′

i areλ′
i = λi +γδi,

and by choosingγ such thatγ /∈ {−λ2/δ2,−λ3/δ3, . . . ,−λm/δm}, λ′
i will be distinct from

zero for alli.
An obvious new change of basis proves the theorem. �

4. The algebraic variety N n,m: Lie superalgebras of maximal nilindexMn,m

The aim of this paper is to determine the maximal class. It is easy to see that ifg =
g0 ⊕ g1 ∈ N n,m with nilindex n + m − 1, theng0 is a filiform Lie algebra andg1 is a
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g0-filiform module; that isg = g0 ⊕ g1 ∈ F n,m andMn,m ⊂ F n,m in this case. However,
in this section we will prove that this nilindex is only possible forn = 2 andm odd. In all
the cases that remain, the maximal nilindex (or the nilindex of the maximal classMn,m)
will be ≤ n + m − 2 and then we have in general

Mn,m¬ ⊂ F n,m,

which complicates the issue because no adapted basis exist outsideF n,m.
Next we consider some of the properties of the algebraic subvarietyN n,m.

Proposition 4.1. N n,m
p,q is an algebraic subvariety ofLn,m.

Proof. The setN n,m
p,q of Ln,m is defined by the restrictionsCp(g0) = 0 andCq(g1) = 0, but

these restrictions are polynomial equations of the structure constants. ThusN n,m
p,q is closed

for Zariski topology and it will have the structure of an algebraic subvariety. We denote by
N n,m

p,q the corresponding affine variety. �

We denote byN n,m
k the subset ofLn,m formed by all Lie superalgebras with nilindex

less or equal tok.

Proposition 4.2. N n,m
k is an algebraic subvariety ofLn,m.

Proof. The setN n,m
k of Ln,m is defined as follows:

N n,m
k = {µ ∈ Ln,m/µ(X1, µ(X2, . . . , µ(Xk,Xk+1)) · · · ) = 0}

for anyX1, . . . , Xk+1 ∈ C
n,m.

It is easy to see that, if we fix a basis ofC
n,m, the laws of Lie superalgebras are identified

with their structure constants that verify polynomial relations as was seen in Section 2. The
setN n,m

k given by the above definition will come done by polynomial relations too, so
N n,m

k is closed for Zariski topology and it will have the structure of an algebraic subvariety
of Ln,m. We denote byN n,m

k the corresponding affine variety. �

Remark 4.3. We observe that the setN n,m
n+m−1 is the variety of all the nilpotent Lie super-

algebrasN n,m. Thus we have

N n,m
n+m−1 = N n,m = N n,m

n−1,m.

Definition 4.4. A Lie superalgebrag = g0 ⊕ g1 ∈ N n,m is said to be of maximal nilindex,
or belongs to the maximal class, if its nilindex is the maximum possible.

Remark 4.5. The problem of finding the maximal nilindex for any pair of dimensionsn and
m (dimensions of the even and odd parts, respectively) is still an open one. The function that
gives the maximal nilindex for each pair of dimensionsn andm will be noted byf(n,m).
For nilpotency it is easily see thatf(n,m) ≤ n + m − 1.

We note byMn,m the maximal class composed of all the nilpotent Lie superalgebras of
maximal nilindexf(n,m). By constructionMn,m is the true generalization of the filiform
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Lie algebras in the theory of Lie superalgebras, not the filiform Lie superalgebras,F n,m,
presented in[6].

Proposition 4.6. Each component ofMn,m determines a component ofN n,m.

Proof. Mn,m = N n,m −N n,m
f(n,m)−1 is a Zariski open subset ofN n,m. �

Corollary 4.7. For anyµ ∈Mn,m the Zariski closure of the orbitO(µ), O(µ),
Z

will be
an irreducible component ofN n,m.

As we have already noted in general there is not an adapted basis, so we can only speak
in terms of an adequate basis. Thus we have the following lemma.

Lemma 4.8. If g = g0⊕g1 ∈ N n,m, then there exists a basis{X0, X1, . . . , Xn−1, Y1, . . . ,

Ym} of g, with {X0, X1, . . . , Xn−1} a basis ofg0 and{Y1, . . . , Ym} a basis ofg1, such that:

[X0, Xi] = εiXi+1, 1 ≤ i ≤ n − 2, [X0, Xn−1] = 0,

[X0, Yj] = δjYj+1 + (1 − δj)Ψj(Yj+2, . . . , Ym), 1 ≤ j ≤ m − 1,

[X0, Ym] = 0, εi, δj ∈ {0,1},
whereX0 is just a characteristic vector of the Lie algebrag0.

Proof. We take an adapted basis forg0 (such a basis exists forg0 be a nilpotent Lie algebra)
and take also, as a basis ofg1, the vectors corresponding to the decreasing sequence of
vectorial subspaces ofg1 (this exists forg1 be ag0-module). Then, the result is obtained
applying simple changes of basis as and when required. �

The first question we address is whether there exist Lie superalgebras with maximal
nilindex f(n,m) = n + m − 1 and thus if there exists a pair of values(n,m) for which
this maximal nilindex is obtained. It is natural to perform this search inF n,m, but such a
strategy cannot be employed for cases in which the functionf(n,m) ≤ n + m − 2.

Searching a superalgebra as described above we findK2,m.

Example 4.9 (Of existence). In what follows we denote byK2,m (m odd) the family of Lie
superalgebras for which the products in an adapted basis{X0, X1, Y1, . . . , Ym} are:

K2,m :

{
[X0, Yi] = Yi+1, 1 ≤ i ≤ m − 1,
[Yi, Ym+1−i] = (−1)(i+1)X1, 1 ≤ i ≤ 1

2(m + 1).

K2,m (m odd) is a family of Lie superalgebras with maximal nilindexn + m − 1 = m + 1.
So,f(2,m) = m + 1 for m odd.

Remark 4.10. O(K2,m) will be a family of Lie superalgebras of maximal nilindex
m + 1.
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Next we study in more detail this orbit, obtaining that it is an open set for the Zariski
topology inN 2,m for anym odd. This result is important because if the orbit is open then
its dimension coincides with the dimension of its Zariski closure, and this closure is a
component of the variety of nilpotent Lie superalgebras. We first need the following two
lemmas.

Lemma 4.11. Supposeg ∈ F 2,m,withmodd and with adapted basis{X0, X1, Y1, . . . , Ym}.
If the structure constantE1

1m �= 0 theng belongs to the following family of filiform Lie su-
peralgebrasµ(α1, . . . , α(m−1)/2) defined by

[X0, Yi] = Yi+1, 1 ≤ i ≤ m − 1,

[Yi, Ym+1−i] = (−1)i+1X1, 1 ≤ i ≤ 1
2(m + 1),

[Yi, Y2k−i] = (−1)i+1αkX1, 1 ≤ i ≤ k,1 ≤ k ≤ 1
2(m − 1)

with αk ∈ C for 1 ≤ k ≤ (m − 1)/2.

Remark 4.12. E1
1m �= 0 signifies that dim(Z(g)) = 1.

Proof. Letg be as described under the assumptions of the lemma and with an adapted basis
{X0, X1, Y1, . . . , Ym}. If E1

1m �= 0 without loss of generality we can suppose thatE1
1m = 1

and then, the descending central sequence is

Ci(g) = 〈X1〉 ⊕ 〈Yi+1, . . . , Ym〉, 1 ≤ i ≤ m − 1, Cm(g) = 〈X1〉 ⊕ 〈0〉,
Cj(g) = 〈0〉 ⊕ 〈0〉, j > m + 1.

By induction and appropriate use of the graded Jacobi identity we obtain the result.�

Remark 4.13. The familyµ(α1, . . . , α(m−1)/2), with m odd, is open inF 2,m for Zariski
induced topology. AsF 2,m is open inN 2,m thenµ(α1, . . . , α(m−1)/2) is open inN 2,m.

Remark 4.14. In the family of the previous lemma we obtainK2,m for αk = 0, 1 ≤ k ≤
(m − 1)/2.

Lemma 4.15. For any oddm, the((m − 1)/2)-parametric familyµ(α1, . . . , α(m−1)/2) is
included in the orbit ofK2,m

µ(α1, . . . , α(m−1)/2) ⊆ O(K2,m).

Proof. Let g be any Lie superalgebra of the familyµ(α1, . . . , α(m−1)/2).
Making the change of basis defined by

X′
0 = X0, X′

1 = a2
1X1, a1 �= 0, Y ′

1 =
m∑

i=1

aiYi,

Y ′
j = [X′

0, Y
′
j−1] =

m−j+1∑
i=1

aiYi+j−1, 2 ≤ j ≤ m,
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whereai, 2 ≤ i ≤ m, are free parameters, the new structure constantE1
1m remains equal to

1. For the bracket products

[Yi, Ym−1−i] = (−1)i+1α(m−1)/2X1, 1 ≤ i ≤ 1
2(m − 1),

we obtain thatα′
(m−1)/2 is a polynomial equation ina2 of degree 2. It is possible to select

a2 as one of the roots ofα′
(m−1)/2. Similarly, and by induction, we obtain the theorem.�

Theorem 4.16. For any oddm there exists an orbit inN 2,m, namelyO(K2,m), that is open
for Zariski topology.

Proof. The result follows fromO(K2,m) ⊆ µ(α1, . . . , α(m−1)/2). In fact, if g ∈ O(K2,m)

then dim(Z(g)) = 1, so the result is obtained because, if not, dim(Z(g)) = 2 which is a
contradiction. �

Theorem 4.17 (Main theorem for maximal class).The only non-trivial Lie superalgebra,
up to isomorphism, with nilindexn + m − 1 is K2,m which occurs forn = 2 andm odd.

Before proving the theorem, the following proposition is required.

Proposition 4.18. The maximal nilindex of the familyF n,m is n + m − 1 and it is only
obtained forn = 1 (degenerated case) and forn = 2 andm odd.

Proof. The proof is very laborious and needs the three following technical lemmas that are
proved using the graded Jacobi identity.

Lemma 4.19. Supposeg = g0 ⊕ g1 ∈ F n,m. If the vectorXk appears in the bracket
[Y1, Ym] andXl /∈ B(g1 × g1) with 0 ≤ l < k (according to the notation of[1]) thenm is
odd andk = n − 1.

Lemma 4.20. Supposeg = g0⊕g1 ∈ F n,m. If the vectorX1 appears in the bracket[Yi, Yj]
for the casen ≥ 3 andm odd theni + j is even and2 ≤ i + j ≤ m − 1.

Lemma 4.21. Suppose beg = g0 ⊕ g1 ∈ F n,m. If the vectorX1 appears in the bracket
[Yi, Yj] in the casen ≥ 3 andm even theni + j is even and2 ≤ i + j ≤ m.

In order to prove the proposition it is necessary to consider the following cases separately:
(i) n = 1, (ii) m = 1, (iii) n ≥ 3 andmodd, (iv) n ≥ 3 andmeven and (v)n = 2 and
meven.

The proof for case (i) is trivial. The result for case (ii) is obtained if adequate graded
Jacobi identities are considered. The result for case (iii) is obtained usingLemma 4.20and
considering all the possible bracket products [Yi, Yi] with 1 ≤ i ≤ (m − 1)/2, in which
vectorX1 could appear. Cases (iv) and (v) are analogous, usingLemma 4.21instead of
Lemma 4.20.
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Proof of Theorem 4.17. It is easy to see that the condition of nilindexn + m − 1 leads
one to consider filiform Lie superalgebras (this fact is not true for nilindices≤ n + m −
2). Given the previous proposition and the structure of the orbit ofK2,m determined in
F 2,m by the conditionE1

1m �= 0, it only remains to determine if the structure constant
E1

1m = 0. Then by the graded Jacobi identity, we never can obtain maximal nilindexm+ 1
(n + m − 1). �

Corollary 4.22. For n = 2 and m odd the conjectureMn,m ⊂ F n,m, is true; that is,
M2+m ⊂ F 2+m. Further,

M2+m = O(K2,m) = µ(α1, . . . , α(m−1)/2).

Forn = 2 and any evenm we have solved the problem of finding the maximal nilindex
function,f(n,m), and determining the maximal class,Mn,m, or set of nilpotent Lie super-
algebras, with nilindex equal tof(n,m). Further, for all the remaining possibilities for the
pair of dimension(n,m), we have proved that

f(n,m) ≤ n + m − 2.

Now, one can find lots of cases for(n,m) where the functionf(n,m) takes the value
n + m − 2. Thus, we have the following theorem.

Theorem 4.23. The maximal nilindex function, f(n,m), is equal ton + m − 2 if n andm

belong to one of the following cases:

(i) n = 2 andm even.
(ii) n = 3.

(iii) n = 4 andm = 5 or m even.
(iv) n ∈ {m,m + 1}.
(v) n = m + 2 with m even.

Remark 4.24. The casem = 1 andn = 1 are trivial and we obtainf(1,1) = 2 = f(2,1),
f(n,1) = n − 1 for n ≥ 3 andf(1,m) = m.

Proof of Theorem 4.23. It is enough to present in each case a family of Lie superalgebras
with nilindexn + m − 2. In some cases the work needed to obtain these families has been
very laborious, so we will only give the final expression.

• For the first case (i) we can consider the family of Lie superalgebrasK2,m, with m even,
defined by

[X0, Yi] = Yi+1, 1 ≤ i ≤ m − 1,

[Yi, Ym−i] = (−1)(m−2i)/2X1, 1 ≤ i ≤ 1
2m.

(We have used the same notation,K2,m, because it is the natural adaptation ofK2,m (m
odd) to the case whenm is even.)
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• Forn = 3 andm odd, we can considerK3,m, the family of laws that can be expressed in
an adapted basis{X0, X1, X2, Y1, Y2, . . . , Ym} by

[X0, X1] = X2, [X0, Yi] = Yi+1, 1 ≤ i ≤ m − 1,

[Yi, Ym+1−i] = (−1)i+1X2, 1 ≤ i ≤ 1
2(m + 1).

If n = 3 andm is even we can consider the following family:

[X0, X1] = X2, [X0, Yi] = Yi+1, 1 ≤ i ≤ m − 1,

[Yi, Ym−i] = (−1)(m−2i)/2X1, 1 ≤ i ≤ 1
2m,

[Yi, Ym+1−i] = (−1)(m−2i)/2(1
2(m − 2i + 1))X2, 1 ≤ i ≤ 1

2m.

• Forn = 4 andm even, we can consider the following family of laws that can be expressed
in an adapted basis{X0, X1, X2, X3, Y1, Y2, . . . , Ym} by

[X0, Xi] = Xi+1, 1 ≤ i ≤ 2, [X0, Yi] = Yi+1, 1 ≤ i ≤ m − 1,

[Yi, Ym−i] = (−1)(m−2i)/2X1, 1 ≤ i ≤ 1
2m,

[Yi, Ym+1−i] = (−1)(m−2i)/2(1
2(m − 2i + 1))X2, 1 ≤ i ≤ 1

2m,

[Yi, Ym+2−i] = (−1)(m−2i+2)/2(1
2((i − 1)m − (i − 1)2))X3, 2 ≤ i ≤ 1

2(m + 2).

If n = 4 andm = 5 we can consider the following superalgebra:

[X0, Xi] = Xi+1, 1 ≤ i ≤ 2, [X0, Yi] = Yi+1, 1 ≤ i ≤ 4,

[X1, Y3] = Y5, [X2, Y2] = −Y5, [X3, Y1] = Y5,

[Y1, Y3] = −X1, [Y1, Y4] = −3
2X2, [Y2, Y2] = X1, [Y2, Y3] = 1

2X2,

[Y2, Y4] = −3
2X3, [Y3, Y3] = 2X3.

• Cases for whichn = m and n = m + 1. For these cases it is enough to consider
the following family of laws whose products can be expressed in an adapted basis
{X0, X1, . . . , Xn, Y1, . . . , Ym} by

[X0, Xi] = Xi+1, 1 ≤ i ≤ n − 2, [X0, Yj] = Yj+1, 1 ≤ j ≤ m − 1,

[X1, Xk] = −Xk+1, 2 ≤ k ≤ n − 2, [X1, Yr] = −Yr+1, 2 ≤ r ≤ m − 1,

[Xr, Y1] = Yr+1, 2 ≤ r ≤ m − 1, [Y1, Y1] = X1,

[Y1, Yr] = 1
2Xr, 2 ≤ r ≤ n − 1.

These families have nilindexn + m − 2.
• The casen = m + 2, m even. In this case we consider the Lie superalgebra of nilindex

n + m − 2 that can be expressed in an adapted basis{X0, X1, . . . , Xm+1, Y1, . . . , Ym}
by

[X0, Xi] = Xi+1, 1 ≤ i ≤ m, [X0, Yj] = Yj+1, 1 ≤ j ≤ m − 1,

[X1, Xk] = −Xk+1, 2 ≤ k ≤ m − 1,

[Xi,Xm+1−i] = (−1)i+1Xm+1, 2 ≤ i ≤ 1
2m,
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[X1, Yj] = −Yj+1, 2 ≤ j ≤ m − 1,

[Xj, Y1] = Yj+1, 2 ≤ j ≤ m − 1, [Y1, Y1] = X1,

[Y1, Yk] = 1
2Xk, 2 ≤ k ≤ m,

[Yi, Ym+2−i] = (−1)i 1
2Xm+1, 2 ≤ i ≤ 1

2(m + 2). �

Proposition 4.25. In the filiform case it is verified that, if n ≥ 2m + 1, then

f(n,m) = n − 1.

Proof. By induction, and using the graded Jacobi identity, we obtainXi /∈ Im(adYi, . . . ,

adYm) with 1 ≤ i ≤ m.
Consequently the descending central sequence is

Ci(g) = 〈Xi+1, . . . , Xn−1〉 ⊕ 〈Yi+1, . . . , Ym〉, 1 ≤ i ≤ m − 1,

Ci(g) = 〈Xi+1, . . . , Xn−1〉 ⊕ 〈0〉, m ≤ i ≤ n − 2, Cn−1(g) = 〈0〉,
and the nilindex isn − 1. �

Corollary 4.26. In general, we have thatf(n,m) ≥ n − 1 if n ≥ 2m + 1.

We conjecturethat in the general case the maximal nilindex functionf(n,m) stabilizes
atn − 1 as in the filiform case.

5. Classifications for specific dimensions

The classifications that we present in this section are illustrations of the validity of the
conjectureM2,m �⊂ F 2,m for any oddm. Thus, we have the following results.

Proposition 5.1. Letg be any Lie superalgebrag ∈ N 2,1. Then it is isomorphic to one of
the two following Lie superalgebras that can be expressed in an adapted basis{X0, X1, Y}
by

−µ2,1 (abelian), −K2,1 : [Y, Y ] = X1.

Proof. The proof is trivial. �

Theorem 5.2 (Classification).Letg = g0⊕g1 be any Lie superalgebrag ∈ N 2,3. If g is not
a filiform Lie superalgebra then it is isomorphic to one of the following Lie superalgebras
that can be expressed in an adapted basis{X0, X1, Y1, Y2, Y3} by

−µ2,3 (abelian), −B2,3 : [Yi, Yj] = b0
ijX0 + b1

ijX1 (g1 = trivial g0-module),

−L2 ⊕ C
2 : [X0, Y1] = Y2 (L2 filiform Lie algebra),

−µ1(� µ2 ⊕s C
3) : [X0, Y1] = Y2, [X1, Y1] = Y3 (metabelian Lie algebra),

−H2(� µ2 ⊕s C
3) : [X0, Y1] = Y3 (Heisenberg Lie algebra),
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−µ2 : [X0, Y1] = Y2, [Y1, Y1] = X1 (split caseN 2,2 ⊕ C),

−µ3 : [X0, Y1] = Y3, [X1, Y2] = −Y3, [Y1, Y1] = X1, [Y1, Y2] = 1
2X0,

−µ4 : [X0, Y1] = Y2, [Y1, Y1] = X1, [Y3, Y3] = X1,

−µ5 : [X0, Y1] = Y2, [Y1, Y3] = X1, −µ6 : [X0, Y1] = Y2, [Y3, Y3] = X1.

Remark 5.3. The Lie superalgebrasµ2,3, B
2,3, L2 ⊕ C

2, µ1,H2 will be considered as
degenerate cases.

Remark 5.4. There are only four, up to isomorphism, Lie superalgebras non-degenerate
and non-split for the varietyN 2,3 − F 2,3. These Lie superalgebras areµi with 3 ≤ i ≤ 6.

Proof. It is clear that all these Lie superalgebras are inN 2,3 − F 2,3. It is trivial to show
that any degenerate case is not isomorphic to any another.

For the non-degenerate cases it is sufficient to show

nilindex dim(Centg(g1)) dim[Centg1(g0), Centg1(g0)]

µ3 3 – –
µ4 2 2 1
µ5 2 2 0
µ6 2 3 –

It only remains to prove that there are no other possibilities. From Theorem 4.7, there exists
an homogeneous basis{X0, X1, Y1, Y2, Y3} such that

[X0, Y1] = δ1Y2 + (1 − δ1)Ψ1(Y3), [X0, Y2] = δ2Y3

with δ1, δ2 ∈ {0,1}. There are six possibilities for [X0, Yi], 1 ≤ i ≤ 2 and there are
different cases for each one of them. However, using, essentially, graded Jacobi identities
and adequate change of basis we obtain the result. �

6. Relations betweenMn,m and F n,m

It is easy to prove thatF n,m �⊂Mn,m. For example, if we consider any Lie superalgebra
g ∈ F 2,m−O(K2,m), withm odd, the structure constantE1

1m is equal to zero which implies
thatgwill be of nilindexm which is not maximal (the maximal nilindex in this case ism+1).
Sog will be a filiform Lie superalgebra that is not in the maximal class.

Finally, in this section we prove thatMn,m �⊂ F n,m.
We use the family of non-filiform Lie superalgebras ofM3,m, with m odd, which can be

expressed in an adapted basis{X0, X1, X2, Y1, . . . , Ym} by the products

[X0, Yi] = Yi+1, 1 ≤ i ≤ m − 1,

[Yj, Y2k−j] = (−1)j(X1 − kX2), 1 ≤ j ≤ k,1 ≤ k ≤ 1
2(m + 1).
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Theorem 6.1. Mn,m �⊂ F n,m.

Proof. The mentioned family has maximal nilindexm+1 (= n+m−2) for each dimension
m which is odd. It is clearly not a filiform Lie superalgebra because the even part is abelian
and hence not filiform, which proves the theorem. �
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